

Bharati College (University of Delhi) Janak Puri, Delhi- 100058 www.bharaticollege.du.ac.in

Lesson Plan (CORE, Semester II, January, 2023 to June 2023)

Teacher	Dr. Ankit Gupta	Department	Mathematics	
Course	B.Sc (H) Mathematics	Semester	Second	
Paper	Calculus	Academic Year	2022-23	
Learning Objectives				
The primary objective of this course is : The exciting world of differential equations. Their applications and mathematical modeling 				
 On completion of this course, the student will be able to: Learn the basics of differential equations and compartmental models. Formulate differential equations for various mathematical models. Solve first order non-linear differential equations, linear differential equations of higher order and system of linear differential equations using various techniques. Apply these techniques to solve and analyze various mathematical models. 				
Lesson Plan				
Week No.	Theme/ Curriculum	Any	Additional Information	

Week 1-4	 Concept of implicit, general, and singular solutions for the first order ordinary differential equation; Bernoulli's equation, Exact equations, Integrating factors, Initial value problems, Reducible second order differential equations. Applications of first order differential equations to Newton's law of cooling, exponential growth and decay problems 	Allocation of Assignment I
Week 5 – 8	 General solution of homogenous equation of second order, Principle of superposition for a homogenous equation, Wronskian and its properties, Linear homogeneous and non-homogeneous equations of higher order with constant coefficients Method of variation of parameters. Method 	
	• Method of variation of parameters, Method of undetermined coefficients.	
Week 9 - 12	• Two-point boundary value problems, Cauchy-Euler's equation, System of linear differential equations, Application of Second order differential equation: Simple pendulum problem.	
	• Introduction to compartmental models, Lake pollution model, Density-dependent growth model.	
Week 13 - 15	• Interacting population models, Epidemic model of influenza and its analysis, Predator-prey model and its analysis, Equilibrium points, Interpretation of phase plane.	Allocation of Assignment II

References

- 1. Barnes, Belinda & Fulford, Glenn R. (2015). Mathematical Modeling with Case Studies, Using Maple and MATLAB (3rd ed.). CRC Press. Taylor & Francis Group.
- Edwards, C. Henry, Penney, David E., & Calvis, David T. (2015). Differential Equations and Boundary Value Problems: Computing and Modeling (5th ed.). Pearson Education.
- 3. Ross, Shepley L. (2014). Differential Equations (3rd ed.). Wiley India Pvt. Ltd.